ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD
 (Department of Computer Science)

WARNING
 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM "AIOU PLAGIARISM POLICY".

Course: Digital Logic Design (3409)
Level: Bachelor
Semester: Autumn, 2013
Total Marks: 100

ASSIGNMENT No. 1

Note: All questions carry equal marks.
Q. 1 Add and multiply the following numbers in the given base without converting to decimal:
(a) $(1203)_{4}$ and $(332)_{4}$
(b) $(612.3)_{8}$ and (62.6) 8
(c) $\quad(297)_{12}$ and $(128)_{12}$
Q. 2 Demonstrate by means of truth tables the proof of De Morgan's Laws for three variables and distributive law of $*$ over + .
Q. 3 Given the Boolean function: $\boldsymbol{F}=\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}+\boldsymbol{x} \boldsymbol{y}^{\prime} \boldsymbol{z}^{\prime}+y^{\prime} z$ implement it with:
(a) AND, OR, and NOT Gates
(b) Only OR and Not Gates
(c) Only AND and NOT Gates
Q. 4 a) Obtain the simplified expressions in sum of products for the following Boolean Function:
$x^{\prime} z+w^{\prime} x y^{\prime}+w\left(x^{\prime} y+x y^{\prime}\right)$
b) Simplify the Boolean function F using the don't-care condition d, in (1) sum of products and (2) product of sums:
$F=A C E+A^{\prime} C D^{\prime} E^{\prime}+A^{\prime} C^{\prime} D E, d=D E^{\prime}+A^{\prime} D^{\prime} E+A D^{\prime} E^{\prime}$
Q. 5 a) Obtain the NAND logic diagram of a full-adder from the Boolean function: $C=x y+x z+y z$ and $S=C^{\prime}(x+y+z)+x y z$
b) Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of the input number.

ASSIGNMENT No. 2

Total Marks: 100

Note: All questions carry equal marks.

Q. 1 Design an excess-3-to-BCD code converter using a 4-bit full-adders MSI circuit.
Q. 2 Using MSI circuits, construct a binary parallel adder to add two 16-bit binary number and label all carries between the MSI circuits.
Q. 3 Draw the logic diagram (showing all gates) of a master-slave D flip-flop. Using NAND gates.
Q. 4 a) Design a BCD counter with JK flip-flops.
b) What is the difference between serial and parallel transfer? What type of register is used in each case?
Q. 5 a) Draw the interconnection of I2L gates to form a $2 * 4$ decoder.
b) Calculate the noise margin of the ECL gate.

Recommended Book: Digital Logic Design by Morris Mano

Course Outlines:

Unit-1: Binary System

Binary Numbers Based Conversion of Octal, Hexadecimal and Binary, Complements, Binary Codes, Binary Logic and ICs

Unit-2: Boolean Algebra and Logic Gates
Definitions, Theorems and Properties, Boolean Functions, Canonical and STD Forms, other Logical Properties, Gates

Unit-3: Simplification of Boolean Function
Map Method, NAND and NOR Implementation, Tabulation Method, Prime Implement

Unit-4: Combination Logic

Design Procedure, Adder, Subtractors, Code Conversation Analysis Procedure, NAND and NOR Functions, Ex-OR and Ex-NOR Function

Unit-5: Combination Logic with MSI and LSI
Binary Parallel Adder, Decimal Adder, BCD Counter, Magnitude Compactor, Decoders, Demultiplexers, Encoder, Multiplexer, ROM, PLA

Unit-6: Sequential Logic
Introduction, Flip Flop, Triggering, State Reduction Excitation Table, Design Procedure, Design of Counter

Unit-7: Register, Counter, and Memory Unit Register Counter, Timing Sequence, Memory Unit

Unit-8: Asynchronous Sequential Logic
Analysis Procedure, Circuits with Latches, Design Procedure, Reductions of State and Flow Tables, Race Free State Assignment

Unit-9: Digital Integrated Circuits
Bipolar Transistor Characteristics, RTL and DTL Circuits, Transistor, Transistor Logic, Emitter Coupled Logic (ECL), Metal Oxide Semiconductor (MOS), CMOS

